Xilinx 7系列FPGA Multiboot介绍

时间:2025-04-28  作者:Diven  阅读:0

在远程更新的时候,有时候需要双镜像来保护设计的稳定性。在进行更新设计的时候,只更新一个镜像,另一个镜像在部署之前就测试过没问题并不再更新。当更新出错时,通过不被更新的镜像进行一些操作,可以将更新失败的数据重新写入Flash。这样即使更新出错,也能保证设计至少可以被远程恢复。

Xilinx 7系列FPGA Multiboot介绍

Xilinx的双镜像方案成为Multiboot。本文对Xilinx 7系列的Multiboot做一些简单介绍。

Multiboot直接操作的是两个镜像,但实际上可以用于多个镜像。为了便于描述,Multiboot中的两个镜像分别成为G镜像(Golden)和M镜像(Multiboot)。

远程更新的方案,有一些是通过FPGA来读写Flash的,例如Xilinx平台下需要自己实现的Flash读写控制器,Altera平台下的ASML IP。当无法提供JTAG等其连接时,Flash的更新就只有FPGA方案。

当写入Flash的操作出现错误,或者Flash中部分地址中的数据出现错误,导致无法正确写入或者存储的数据出现错误,这样会导致FPGA无法加载成功。

当FPGA无法加载成功或者工作不正常的时候,Flash的读写操作也就无法得到保证。此时也就不能重新通过远程更新方案来重新读写Flash,纠正之前的错误。所以可以看到,如果Flash直接由FPGA控制,当远程更新出现错误时,很可能导致远程更新彻底失效,只能安排现场更新来修复。

对应方案就是使用双镜像(多镜像),更新的时候只更新M镜像,更新后直接使用M镜像。当出现M镜像更新出现错误的时候,则启动G镜像。通过G镜像中的设计来重新更新Flash中M镜像部分的数据。

由于G镜像从来没有被更新过,这样出现错误的概率也就非常小。这样即使M镜像出现错误,可以通过G镜像来完成一些工作(例如Flash读写操作),由此来保证设计一直可以使用。

从这个分析可以看出,双镜像的方案,需要完成两个任务。

1.正常情况下,加载完成时应该是M镜像在运行

2.出现错误的时候,需要返回G镜像

图片来自UG470

从上图可以看到,Xilinx 7系列FPGA的Multiboot方案是从基地址开始存放G镜像,后续存放M镜像。加载过程中是先加载M镜像,配置完成后如果成功,则运行M镜像;如果运行失败,则重新加载G镜像。

下面就从需要完成的两个任务,结合上图来进行介绍。

先看第一个任务,加载M镜像。

上电完成之后,FPGA就会按照设置,进行加载操作。在主动模式下,FPGA会开始对Flash的操作,尝试读取Flash中存储的配置镜像数据。需要注意的是,主动模式下的这一系列操作都是FPGA自动完成的,用户无法控制。

所以就出现了第一个问题。既然读取操作是自动的,那么FPGA是如何知道M镜像存储在哪里,并先加载M镜像呢?如果是从0地址开始读取,那么应该先完成G镜像的加载。否则,是否使用Multiboot及M镜像的地址,是如何传递给FPGA、让FPGA知晓呢?

Xilinx的Multiboot方案中的解决办法是使用一条加载命令:IPROG。而这条命令,是放在G镜像中。

具体说,对于FPGA直接从0地址开始读取,先开始加载G镜像,但是这个G镜像是经过特别处理的,在镜像数据刚开始的部分添加了IPROG命令和M镜像的地址。当FPGA读取到这个命令之后,就会直接跳过后面的数据,从设置的地址开始继续加载。这样的操作,导致G镜像只是运行了最前面的几条加载命令,而M镜像也只是等了几条命令的操作就开始加载了,保证了M镜像的直接加载。

需要说明的是IPROG这是一条命令,所以既可以在G镜像中生效,也可以在设计中任意使用。用户可以将IPROG命令发给ICAP,来实现任意时间触发重新加载的需求。通过设置合适的地址,可以实现多个镜像的切换。

图片截取自Vivado

从vivado中的设置可以看出,Multiboot的主要设置只有这6个。第一个成为Fallback,最后一个成为Watchdog。这两个下文会做介绍。第四个第五个是关于RS pin。等熟悉Multiboot理解之后可以查看文档进行理解,本文不做深入介绍。

第二个是设置跳转到的地址、第三个是在G镜像中加入IPROG命令。这两个操作可以以命令的形式发给ICAP接口,从而触发Multiboot中转跳并加载新的镜像数据。

看完上述的分析,应该明白如何实现先加载M镜像这个需求了。下一步就是,在加载失败时如何回退到G镜像。

M镜像加载不成功,需要回退到G镜像的操作,Multiboot方案称这一步骤为Fallback。

Fallback在四种条件下会被触发:

1. ID Code错误

2. CRC错误

3. Watchdog超时

4. BPI地址越界

ID Code错误是指配置文件中的器件型号和当前器件不匹配。CRC校验是指配置数据送入FPGA之后会进行校验,如果数据不一样则会提示CRC错误。这两个基本原理比较容易理解,至于具体细节,需要能解析bit文件的内容之后才能充分理解。

Watchdog超时是指在规定的时间内如果无法配置成功,则触发Watchdog超时,进而会导致Fallback。

BPI地址越界是指发现逐步增长的BPI地址超过最大值,发生溢出,回到0,则除法Fallback。

大概理解一下四个条件之后可以看到,BPI是只针对BPI模式的,和Watchdog有一点类似,都是在一段时间内如果没有加载成功,地址会逐步增加,计时器会逐步增加,超过范围后就触发Fallback,所以BPI就不做进一步解释了。

ID Code也不做进一步解释了,因为ID Code不对,大概率是用错镜像文件了。所以也没有太多可以分析的。

重点是2和3,当存在Multiboot镜像的时候,如M镜像的内容出现问题,则会触发CRC校验错误,这样可以保证镜像加载成功之后,数据是没有问题的。

但是如果没有Multiboot镜像,则CRC校验无法进行,或者加载到一半就挂死了。这个时候就需要Watchdog来触发Fallback。只要一定时间内加载没有完成,就一定会触发Watchdog超时。

所以CRC是用来保证加载正确的,Watchdog是用来保证一定会提示加载失败的。

注意,Watchdogd的计时设置,请设置好然后实际测试一下,而不要仅仅凭经验/文档来推断一个合适的值。

当发生了Fallback之后,工程会反跳回0地址开始加载,从新加载G镜像。这里,FPGA内部的配置寄存器会做记录,当发生Fallback之后,会自动忽略IPROG命令,直接加载G镜像后续的部分,来保证G镜像有机会被完整的加载。

FPGA自带一些寄存器,记录了FPGA加载时的一些状态,通常称为device status寄存器。当初出现加载失败的问题时,可以通过JTAG查看相关寄存器来寻找一些线索,帮助定位问题。

通过这一系列复杂的操作,可以实现双镜像的配置切换。这种方法最大的优点就是速度快。在配置完成之后可以快速的跳转、加载和返回。最关键的双镜像选择这一步是在加载初期就进行转跳,所以跳转非常迅速,适合一些对配置时间有要求的场合。缺点就是原理和设置都相对麻烦了一些。

和上述方法不一样的一个双镜像切换的方法就是用户自行做切换。大致原理是用户利用FPGA的可编程逻辑资源对ICAP模块进行控制,输入需要跳转的地址然后输入IPROG命令,来触发跳转操作。这个操作是需要先加载好G镜像并开始运行,然后由用户来控制什么时候进行跳转。

这样操作的优点有:

1.跳转地址由用户自行选择,所以可以在多个镜像中跳转,而不限于两个;

2.可以选择在合适的时间进行加载,用户选择性更大。

主要缺点:

1.需要对配置过程、ICAP端口和控制命令有更多的理解

2.需要加载完至少一个镜像才能使用,所以对配置时间要求高的场景无法使用

如果仅仅是为了远程更新,那么这个方案,并不合适。用自动的双镜像方案更简单易用一些。只要G镜像调试完毕,整个方案对M镜像的要求比较低。

审核编辑:汤梓红

猜您喜欢

科技日新月异的今天,我们对电子设备性能的要求越来越高,而内存作为电子设备的关键部件,其性能表现很重要。DDR5作为新一代内存技术,以其更高的速度和更大的容量,为...
2024-04-22 00:00:00

LFCSP16_4X4MM_EP(封装类型:LFCSP,尺寸:4x4mm,引脚数:16)是广泛应用于电子元件中的封装形式,因其优良的热性能和电气性能而受到青睐。...
2025-02-21 13:25:32

现代电子电路中,肖特基二极管因其低正向压降和快速开关特性而应用于各种电源转换和整流电路中。SS14肖特基二极管是市场上常见的型号,具有良好的性能和稳定性。本文将...
2025-04-01 03:00:38


你是否好奇过,为什么一些电器设备上会标注PFC?这三个字母代表着功率因数校正(Power Factor Correction),虽然看似低调,却对电器的性能和电...
2024-05-07 00:00:00

DSBGA4是一种新兴的技术方案,在现代电子设备中得到了广泛应用。它的全称为“DualStackBGA4”,是一种封装技术,主要用于集成电路的封装。随着科技的进...
2025-02-24 13:23:36

FM解调需要去掉载波得到基带的信号,考虑到FM的特殊性,使用参考资料1中的小角度近似解调算法。简单来说,FM信号采样后,进行下变频后,传统方法需要对正交分量和同...
2023-06-20 15:00:00

DC-DC转换器是一种能够将一个直流电压转换为另一个直流电压的电子装置,在现代电子设备中是重要配件。这种设备应用于各种需要电源转换的领域,包括手机、笔记本电脑、...
2024-05-18 00:00:00

现代电子产品中,贴片电阻和电容是必不可少的元器件。虽然的外观相似,但在功能和应用上却有很大的不同。了解如何区分这两种元器件对于电子工程师和爱好者来说非常重要。本...
2025-03-17 23:01:06

贴片电阻上的「473」并不是直接表示阻值的大小,而是一种代码表示法。它代表的是47kΩ的阻值。具体来说,前两位数字「47」代表有效数字,第三位数字「3」代表乘以...
2024-11-26 11:29:41