FPGA图像处理-Sobel边缘检测原理

时间:2025-04-27  作者:Diven  阅读:0

因为在做3*3卷积的时候,图像大小会变小,具体计算公式如下

FPGA图像处理-Sobel边缘检测原理

其中O是输出特征图的大小,I是输入特征图的大小,P是Padding的大小,K是卷积核的大小,S是指Stride的大小,当K的值是3,P的值是1,S的值也是1,的时候O的值和I的值相等。

为了保持输出图像的大小在经过卷积后和输入的大小一样,我们需要进行Padding操作,在这里我采用了复制周围一圈的方式来完成。

采用python完成Sobel算法的参考模型

 

import cv2 as cvimport numpy as npimg = cv.imread(r"G:shiyanIDc.jpg")img_gray = cv.cvtColor(img, cv.COLOR_RGB2GRAY)h, w = img_gray.shapeimg_padding = np.zeros((h + 2, w + 2), np.uint8)img_padding[1:h + 1, 1:w + 1] = img_grayimg_padding[0:1, 1:w + 1] = img_gray[0:1, :]img_padding[h + 1:h + 2, 1:w + 1] = img_gray[h - 1:h, :]img_padding[:, 0:1] = img_padding[:, 1:2]img_padding[:, w + 1:w + 2] = img_padding[:, w:w + 1]th = 200sobel_rf = np.zeros((h, w), np.uint8)for i in range(1, h): for j in range(1, w): gx1 = img_padding[i - 1][j + 1] + 2 * img_padding[i][j + 1] + img_padding[i + 1][j + 1] gx2 = img_padding[i - 1][j - 1] + 2 * img_padding[i][j - 1] + img_padding[i + 1][j - 1] gy1 = img_padding[i - 1][j - 1] + 2 * img_padding[i - 1][j] + img_padding[i - 1][j + 1] gy2 = img_padding[i + 1][j - 1] + 2 * img_padding[i + 1][j] + img_padding[i + 1][j + 1] gx = abs(gx1 - gx2) gy = abs(gy1 - gy2) if gx + gy > th: sobel_rf[i - 1][j - 1] = 255 else: sobel_rf[i - 1][j - 1] = 0cv.imshow("sobel_rf", sobel_rf)cv.imshow("src", img_gray)cv.waitKey()cv.destroyAllWindows()

 

根据算法模型完成HDL:提供SpinalHDL源码

 

import spinal.core._import spinal.lib._class Sobel(th: Int, imageColNum: Int, imageRowNum: Int) extends Component { val io = new Bundle { val dataIn = slave(ImageStream(8, imageColNum, imageRowNum, 1)) val dataOut = master(ImageStream(8, imageColNum, imageRowNum, 1)) } noIoPrefix() val genMatrix = new GenMatrix(scala.math.pow(2, log2Up(imageColNum)).toInt, imageColNum, imageRowNum) genMatrix.io.dataIn <> io.dataIn val genMatrixOut = ImageStream(8, imageColNum, imageRowNum, 9) genMatrixOut := genMatrix.io.dataOut val GX1 = RegNext(genMatrixOut.data(0).asUInt +^ (genMatrixOut.data(1) ## B"1'b0").asUInt +^ genMatrixOut.data(2).asUInt) val GX2 = RegNext(genMatrixOut.data(6).asUInt +^ (genMatrixOut.data(7) ## B"1'b0").asUInt +^ genMatrixOut.data(8).asUInt) val GX = Reg(UInt(11 bits)) val GY1 = RegNext(genMatrixOut.data(6).asUInt +^ (genMatrixOut.data(3) ## B"1'b0").asUInt +^ genMatrixOut.data(0).asUInt) val GY2 = RegNext(genMatrixOut.data(8).asUInt +^ (genMatrixOut.data(5) ## B"1'b0").asUInt +^ genMatrixOut.data(2).asUInt) val GY = Reg(UInt(11 bits)) when(GX1 > GX2) { GX := GX1 - GX2 } otherwise { GX := GX2 - GX1 } when(GY1 > GY2) { GY := GY1 - GY2 } otherwise { GY := GY2 - GY1 } val G = RegNext(GX + GY) val sobelOut = Reg(Bits(8 bits)) when(G > th) { sobelOut := 255 } otherwise { sobelOut := 0 } io.dataOut.data(0) := sobelOut io.dataOut.row := Delay(genMatrixOut.row, 4) io.dataOut.col := Delay(genMatrixOut.col, 4) io.dataOut.c.hsync := Delay(genMatrixOut.c.hsync, 4,init = False) io.dataOut.c.vsync := Delay(genMatrixOut.c.vsync, 4,init = False) io.dataOut.c.de := Delay(genMatrixOut.c.de, 4,init = False)}object Sobel extends App { SpinalConfig().generateVerilog(new Sobel(200, 640, 480))}

 

仿真代码:

 

import spinal.lib._import spinal.core._import spinal.core.sim._import scala.collection.mutable.Queueimport java.io.FileOutputStreamimport scala.io.Sourceclass tbSobelC(th: Int) extends Sobel(th, 430, 430) { var src = Array[String]() var destDut = Array[String]() var destRef = Array[String]() // var srcLen = 0 var width = Array[Int]() var high = Array[Int]() val dutData = Queue[Int]() val refData = Queue[Int]() var frameLen = 0 def init(srcFile: Array[String], destDutFile: Array[String], destRefFile: Array[String], imgShape: Array[(Int, Int)]) = { clockDomain.forkStimulus(10) io.dataIn.data(0) #= 0 io.dataIn.row #= 0 io.dataIn.col #= 0 src = srcFile destDut = destDutFile destRef = destRefFile io.dataIn.c.de #= false io.dataIn.c.vsync #= false io.dataIn.c.hsync #= false frameLen = src.length width = imgShape.map(i => i._1) high = imgShape.map(i => i._2) clockDomain.waitSampling(10) } def frame(src: String, width: Int, high: Int) = { val srcFile = Source.fromFile(src) val srcData = srcFile.getLines() var colCnt = 0 var rowCnt = 0 io.dataIn.row #= width io.dataIn.col #= high io.dataIn.c.de #= false io.dataIn.c.vsync #= false io.dataIn.c.hsync #= false clockDomain.waitSampling(20) while (srcData.hasNext) { val data = srcData.next() io.dataIn.data(0) #= data.toInt io.dataIn.c.de #= true if (colCnt == 0 && rowCnt == 0) { io.dataIn.c.vsync #= true println("xx") } else { io.dataIn.c.vsync #= false } if (colCnt == width - 1 && rowCnt == high - 1) { clockDomain.waitSampling(1) io.dataIn.c.de #= false clockDomain.waitSampling(200) } if (colCnt == 0) { io.dataIn.c.hsync #= true } else { io.dataIn.c.hsync #= false } if (colCnt == width - 1 && rowCnt != high - 1) { clockDomain.waitSampling(1) io.dataIn.c.de #= false clockDomain.waitSampling(20) } if (colCnt == width - 1) { colCnt = 0 if (rowCnt == high - 1) { rowCnt = 0 } else { rowCnt = rowCnt + 1 } } else { colCnt = colCnt + 1 } clockDomain.waitSampling() } clockDomain.waitSampling(1000) srcFile.close() } def driver = { val dri = fork { for (i <- 0 until frameLen) { println(s"frame = ${i}") frame(src(i), width(i), high(i)) } } } def dutOut = { val dutOutFile = new FileOutputStream(destDut(0)) val d = fork { while (true) { if (io.dataOut.c.de.toBoolean) { dutData.enqueue(io.dataOut.data(0).toInt) dutOutFile.write((io.dataOut.data(0).toInt.toString + "").getBytes()) } clockDomain.waitSampling() } } } def refFun = { val d = fork { while (true) { for (i <- 0 until frameLen) { val file = Source.fromFile(destRef(i)) val srcData = file.getLines() while (srcData.hasNext) { clockDomain.waitSampling() val data = srcData.next().toInt refData.enqueue(data) } } } } } def scoreBoard = { val d = fork { var index = 0 while (true) { while (dutData.nonEmpty && refData.nonEmpty) { clockDomain.waitSampling() val dut = dutData.dequeue() val ref = refData.dequeue() // if(dut != ref){ // println(s"i:${index} dutData:${dut} refData:${ref}") // } index = index + 1 assert(scala.math.ABS(ref - dut) < 5, s"index:${index}, dutData:${dut} refData:${ref}") // if (scala.math.ABS(ref - dut) != 0) { // println(s"ref = ${ref} , dut = ${dut}") // } } clockDomain.waitSampling() } } } def waitSimDone = { val d = fork { var index = 0 while (index < width(0) * high(0)) {        clockDomain.waitSampling()        if (io.dataOut.c.de.toBoolean) {          index = index + 1        }      }      clockDomain.waitSampling(3000)      simSuccess()    }.join()  }}class tbSobel {  val testFile = Array("testGray.txt")  val dutFile = Array("testDut.txt")  val refFile = Array("testSobel.txt")  val imgShape = Array((430, 430))    val dut = SimConfig.withConfig(SpinalConfig(inlineRom = true)).withWave.compile(new tbSobelC(100))  dut.doSim { dut => dut.init(testFile, dutFile, refFile, imgShape) dut.driver dut.refFun dut.dutOut dut.scoreBoard dut.waitSimDone }}object tbSobel extends App { val tb = new tbSobel}

 

经过分析之后,该代码可以跑到238MHz,占用330LUT,312FF。


审核编辑:刘清

猜您喜欢

金属化纸介电容器是重要的电子元件。在电路中起到储存电能的作用。此种电容器的结构简单,成本低廉,因此应用于各个领域。接下来,我们将深入探讨金属化纸介电容器的特点和...
2025-04-12 13:00:40

2012-09-04 00:00:00

基于模型设计的HDL代码自动生成技术综述-FPGA验证技术-作者简介:尤静,女,西安电子科技大学,计算机科学与技术专业,硕士,工程师。从事FPGA方向开发...
2022-07-10 09:11:00

压线扣是应用于各个行业的实用配件,其主要功能是连接和固定各种材料。在服装行业,压线扣常用于夹克、裤子和包袋等产品中,确保其结构稳固和美观。在家居装饰领域,压线扣...
2019-07-17 00:00:00

在【第五届中国物联网大会之NB-IoT与Sigfox分论坛】将为您邀请目前NB-IoT/Sigfox业内主要运营商和芯片及模组企业大佬,现场为您解读目前NB-I...
2018-10-31 09:34:00


4700贴片电阻,指的是阻值为4700欧姆的贴片电阻。 4700 这个数字本身就代表了电阻值的大小。为了更方便地理解,我们可以把写成更常见的工程表示法:4.7k...
2024-11-29 10:26:37

杂波抑制-MTI和脉冲多普勒处理杂波抑制-MTI和脉冲多普勒处理杂波抑制-MTI和脉冲多普勒处理杂波抑制-MTI和脉冲多普勒处理杂波抑制-MTI和脉冲多普勒...
2023-09-08 10:19:00

开关二极管是应用于电子电路中的元件,主要用于整流、开关和保护电路等功能。为了确保电路的正常运行,判断开关二极管的好坏是非常重要的。本文将介绍几种有效的方法,帮助...
2025-04-05 06:30:34

FPGA和ASIC是数字电路中常见的实现方式,因此人们经常会想要了解哪种芯片在未来的发展中更具有前途。然而,这取决于具体的应用场景和需求。在本文中,我们将探讨F...
2023-08-14 16:40:00