fpga串口通信的verilog驱动编程解析

时间:2025-10-22  作者:Diven  阅读:0

串口的全程为串行接口,也称为串行通信接口,是采用串行通信方式的扩展接口。与串口对应的并行接口,例如高速AD和DA,

fpga串口通信的verilog驱动编程解析

这些都是用的并行接口,而且在编程也简单一些。

串口有一下特点:

(1)通信线路简单,只要一对传输线就可以实现双向通信。

(2)布线简单,成本低。

(3)通信距离长,可以实现数米到数千米的通信距离。

(4)传输速率慢。

常见的串口速率如4800 , 9600 , 115200bps,代表每秒钟发送多少bit数据,例如9600bps就代表1秒内发送9600bit数据。 

串口协议 :协议比较简单,一般都是10位数据,1个起始位 低电平 ,然后八个数据位,低位在前,一个奇偶校验位,平时

一般不用,最后是一位停止位高电平,这样一帧数据发送结束。

下面介绍一下我的程序框架:

整体框架分为两个部分:一个是串口驱动部分 另一个是串口数据控制部分。串口驱动部分负责串口驱动和波特率的选择,串口数据控制模块

负责控制数据内容的控制和发送速度的控制。

从上面时序图可以看出,每10ms发送一帧数据,这里data_en负责波特率驱动使能,uart_tx_end有两个功能,一个是关闭data_en使能,另一个是给10ms计数器

清零。

module uart_tx_driver( //global clock input clk , //system clock input rst_n , //sync reset //uart interface output reg uart_tx , //user interface input [1:0] bps_select , //波特率选择 input [7:0] uart_data , input data_en , //发送数据使能 output reg uart_tx_end);//--------------------------------//Funtion : 参数定义parameter BPS_4800 = 14'd10417 , BPS_9600 = 14'd5208 , BPS_115200 = 14'd434 ;reg [13:0] cnt_bps_clk ;reg [13:0] bps ;reg bps_clk_en ; //bps使能时钟reg [3:0] bps_cnt ;wire [13:0] BPS_CLK_V = bps >> 1 ;//--------------------------------//Funtion : 波特率选择always @(posedge clk or negedge rst_n)begin if(!rst_n) bps <= 1'd0; else if(bps_select == 2'd0) bps <= BPS_115200; else if(bps_select == 2'd1) bps <= BPS_9600; else bps <= BPS_4800;end//--------------------------------//Funtion : 波特率计数always @(posedge clk or negedge rst_n)begin if(!rst_n) cnt_bps_clk <= 1'd0;    else if(cnt_bps_clk >= bps - 1 && data_en == 1'b0) cnt_bps_clk <= 1'd0; else cnt_bps_clk <= cnt_bps_clk + 1'd1;end //--------------------------------//Funtion : 波特率使能时钟always @(posedge clk or negedge rst_n)begin if(!rst_n) bps_clk_en <= 1'd0; else if(cnt_bps_clk == BPS_CLK_V - 1) bps_clk_en <= 1'd1; else bps_clk_en <= 1'd0;end//--------------------------------//Funtion : 波特率帧计数always @(posedge clk or negedge rst_n)begin if(!rst_n) bps_cnt <= 1'd0; else if(bps_cnt == 11) bps_cnt <= 1'd0; else if(bps_clk_en) bps_cnt <= bps_cnt + 1'd1;end//--------------------------------//Funtion : uart_tx_endalways @(posedge clk or negedge rst_n)begin if(!rst_n) uart_tx_end <= 1'd0; else if(bps_cnt == 11) uart_tx_end <= 1'd1; else uart_tx_end <= 1'd0;end//--------------------------------//Funtion : 发送数据always @(posedge clk or negedge rst_n)begin if(!rst_n) uart_tx <= 1'd1; else case(bps_cnt) 4'd0 : uart_tx <= 1'd1; 4'd1 : uart_tx <= 1'd0; //begin 4'd2 : uart_tx <= uart_data[0];//data 4'd3 : uart_tx <= uart_data[1]; 4'd4 : uart_tx <= uart_data[2]; 4'd5 : uart_tx <= uart_data[3]; 4'd6 : uart_tx <= uart_data[4]; 4'd7 : uart_tx <= uart_data[5]; 4'd8 : uart_tx <= uart_data[6]; 4'd9 : uart_tx <= uart_data[7]; 4'd10 : uart_tx <= 1; //stop default : uart_tx <= 1; endcaseendendModule 
Module uart_tx_control( //global clock input clk , //system clock input rst_n , //sync reset //user interface output reg [7:0] uart_data , output reg data_en , input uart_tx_end );//--------------------------------//Funtion : 参数定义parameter DELAY_10MS = 500_000 ;reg [31:0] cnt_10ms ;wire delay_10ms_done ;//data definereg [31:0] cnt_1s;//--------------------------------//Funtion : cnt_10msalways @(posedge clk or negedge rst_n)begin if(!rst_n) cnt_10ms <= 1'd0; else if(cnt_10ms == DELAY_10MS - 1 && uart_tx_end == 1'd1) cnt_10ms <= 1'd0; else cnt_10ms <= cnt_10ms + 1'd1;endassign delay_10ms_done = (cnt_10ms == DELAY_10MS - 1) ? 1'd1 : 1'd0;//--------------------------------//Funtion : data_enalways @(posedge clk or negedge rst_n)begin if(!rst_n) data_en <= 1'd0; else if(delay_10ms_done) data_en <= 1'd1; else if(uart_tx_end) data_en <= 1'd0;end///////////////////////数据测试///////////////////////////////--------------------------------//Funtion : cnt_1salways @(posedge clk or negedge rst_n)begin if(!rst_n) cnt_1s <= 1'd0; else if(cnt_1s == 49_999_999) cnt_1s <= 1'd0; else cnt_1s <= cnt_1s + 1'd1;end//--------------------------------//Funtion : uart_dataalways @(posedge clk or negedge rst_n)begin if(!rst_n) uart_data <= 1'd0;    else if(uart_data >= 10) uart_data <= 1'd0; else if(cnt_1s == 49_999_999) uart_data <= uart_data + 1'd1;endendmodule 

编辑:黄飞

 

猜您喜欢


排阻(或称为排阻抗)是电子电路中一个重要的参数,影响着电路的性能和稳定性。在设计和分析电路时,了解排阻的阻值表示是非常重要的。本文将深入探讨排阻阻值的含义、表示...
2025-04-18 17:00:40

电流检测电阻作为关键元件,应用于电流测量、过流保护和电路控制等领域。立隆(LELON)作为国内知名的电子元器件品牌,其电流检测电阻以高精度、高可靠性和多样化规格...
2021-09-18 12:07:08

1 前言CF卡是目前应用最为广泛的存储卡,由于它不带驱动器,也没有其它的移动部件,因此,极少出现机械故障,使存储的图像数据更加安全。CF卡的使用寿命也非常长,...
2020-08-21 16:41:00

电位器作为调节电压、电流的关键组件,是不可少的配件。而提及电位器领域的佼佼者——TAIYO YUDEN(太阳诱电),其品牌背景与产品特性无疑成为了行业内热议的话...
2017-02-28 07:56:25

分流器作为关键设备,是调节电流、保护电路的重要配件。而“丽景电子”分流器,作为行业内的一颗璀璨明星,其品牌归属地一直是人们津津乐道的话题。本文将深入探讨丽景电子...
2013-01-25 06:36:30

电位器作为调节电压、电流的关键组件,其性能直接影响着设备的稳定性和用户体验。TAIYO YUDEN(太阳诱电),作为全球知名的电子元器件制造商,其生产的电位器凭...
2021-06-22 10:37:40

FFC/FPC连接器因其灵活性和高密度的特点,应用于多个领域。在消费电子产品中,如手机、平板电脑和笔记本电脑,FFC/FPC连接器常用于连接显示屏、主板和其组件...
2009-08-14 00:00:00

变容二极管(Varactor Diode)是特殊的二极管,其主要特性是能够通过施加不同的反向电压来改变其结 capacitance。这种特性使得变容二极管在许多...
2025-04-10 15:30:08

RS-485和RS-422是应用于工业自动化、通信和数据传输领域的重要串行通信标准。根据不同的功能和应用需求,RS-485/RS-422芯片可以分为以下几类。按...
2018-06-16 00:00:00