确保多重FPGA电轨依正确顺序关闭,可避免装置因电压而提早故障

时间:2025-04-27  作者:Diven  阅读:0

确保多重FPGA电轨依正确顺序关闭,跟确保开机程序是否正确一样重要,可避免装置因电压状态无法判断而提早故障。

确保多重FPGA电轨依正确顺序关闭,可避免装置因电压而提早故障

电源定序避免损坏

在启动目前的大型系统单晶片FPGA的多重电轨时,有许多技巧可用来控制其启动顺序和时序。遵照装置制造商所指定的正确顺序甚为重要,如此可避免装置抽取过多电流而导致损坏。

有些方法是透过操纵各转换器的电源良好输出,来控制顺序中下一个供应的Enable脚位。如需要继电器,可插入电容器。另类似的方式则是使用重置IC,在前一个供电达到所要的电压后启动下一个转换器。每种方法都有一些缺点,且这些方法都无法控制电源关闭的顺序。依正确的相反顺序关闭电轨,跟开启电源顺序是否正确一样重要,都是为了确保装置能安全运作。

使用专用的电源定序IC,则更能稳定确保其顺序正确。IC可程式化,在所要的时间点分别传送Enable讯号。图1显示多通道定序器如何管理FPGA核心逻辑、周边和I/O电域。即使如此,电源关闭顺序仍旧难以控制,因为每个电轨上的去耦合电容器在转换器关闭后仍可能残留电荷,且残留时间不一定,而每个电轨最多可能连接多达20mF的总去耦合电容。

图1 透过定序IC管理FPGA电轨。

定序器维持电源关闭控制

使用具有已知时间常数的电路,主动将去耦合电容器放电,定序器便能维持正确的电源关闭顺序,其做法是在串联的电容器中暂时插入放电电阻器。图2显示如何在加入最少必要元件下,使用一对细心挑选的MOSFET将电阻器插入电路中。

图2 控制电源定序的主动放电电路。

电源定序器的EN输出连接到DC-DC稳压器的Enable脚位,也连接到P通道MOSFET(Q1)的闸极。定序器输出降低停用DC-DC稳压器时,Q1便会反转讯号,开启N通道MOSFET Q2。开启时,Q2会透过R2电阻使15mF去耦合电容器放电到接地。

图中的电路假设DC-DC稳压器在提供关机讯号后无法持续产生输出。假如DC-DC稳压器的输出能在收到关机指令后持续供应电源,则需要额外的继电器才能启动放电电路。

选择的R2值必须能确保适当的放电时间,让定序器能在可接受的时间间隔内完成关机。另外还要注意的是,电阻必须够大,才能避免电流尖峰值上升率过快,避免引发EMI问题,以及对Q2和去耦合电容器组造成瞬态热应力。实务上,选择R2值时需考虑一些额外的重要参数,像是Q2的导通电阻(RDS(ON))和电容器组的等效串联电阻(ESR)。

选择MOSFET Q1时应参考电源定序器的输出电压阈值。所选的装置应有够高的闸极阈值电压(VGS(th)),确保定序器输出为高电位时能保持关闭,但要注意的是,VGS(th)会随接面温度上升而下降。本范例中选择的定序器操作供应电压为5V,最小指定高电位输出电压为4.19V。Q1的VGS(th)在60℃环境操作温度下必须大于0.9V,以确保运作正常。闸极应使用100kΩ电阻下拉至源极电位,以避免误开。查看MOSFET资料表中VGS(th)与温度的标准化曲线,显示Diodes公司的ZXMP6A13F符合要求:保证最小VGS(th)在室温下为1V,到60℃则下降至0.9V左右。

在此范例中,我们假设定序器必须在100ms内关闭总共10V的电轨。每个电轨的去耦合电容器组必须在10ms内完成放电。目标是达成RC时间常数8ms的3倍,确保电容器在要求时间内放电到全电压的5%以下。计算RC常数时,电容器组的MOSFET RDS(ON)、寄生线路电阻和ESR都必须与电阻器R2一同纳入考量。

假设电容器ESR和线路电阻加起来不超过10mΩ,去耦合电容器组的总电容值为15mF,则RDS(ON)和R2的适当值可用下列运算式求得:

3x(10mΩ+R2+(1.5×RDS(ON)))×15mF=8ms

假设R2=50mΩ,功率MOSFET Q2的RDS(ON)在VGS=4.5V且环境温度为25℃下必须小于80mΩ。

选择MOSFET时,温度相关变动的效应和RDS(ON)的批量变异也应考量在内。RDS(ON)在4.5V闸极驱动下、超出预期作业温度范围时的变异可能高达15mΩ。因此最好的做法是,确定R2为所选MOSFET之制造商指定最大RDS(ON)的两倍左右。如果R2为50mΩ,则可选用Diodes公司的DMN3027LFG N通道MOSFET。此装置在VGS=4.5V、室温下的RDS(ON)典型值和最大值分别为22mΩ和26.5mΩ。RDS(ON)变化可从15mΩ到40mΩ,放电时间从95%(3倍RC)的3.9ms起跳,使用最差20mF大小的电容器组时放电时间则可能拉长到5.4ms。

评估最大单一脉冲保护MOSFET安全

猜您喜欢

很多开发者在面对设计/架构时,常常有想学但无从下手,学了又不会用的困扰。学习设计并不是只学习设计模式,在进行设计时,我们需要底层思想来支持,这里的底层思想其实就...
2021-06-14 16:29:00

随着科技的进步,自动驾驶技术逐渐成为人们热议的话题。自驾汽车在SAEJ3016自动驾驶等级中被归类为五级自动驾驶,运用了多种传感器,如超声波雷达、毫米波雷达、前...
2023-08-24 10:29:00

尖头圆锉是常见的手工工具,主要用于金属、木材等材料的加工与修整。形状独特,前端尖锐,后部呈圆形,适合在狭小空间内进行精细的打磨和修整。尖头圆锉的表面通常覆盖有细...
2009-09-04 00:00:00

电容补偿在电力系统中十分重要。可以提高电能质量,减少损耗。本文将讨论电容补偿容量与变压器容量的关系。我们将分析的百分比关系。以下是详细内容。电容补偿的定义电容补...
2025-03-27 02:00:34

电子元器件中,贴片二极管是常见的半导体器件,应用于电路中。对于初学者和一些电子爱好者来说,了解如何区分贴片二极管的正负极是非常重要的,因为错误的连接可能会导致电...
2025-04-09 15:31:09

想要设计高效、稳定的电源电路?《经典电荷泵实用电路88例》将成为你的得力助手!本书精选88个来自实际工程项目的经典电荷泵电路,涵盖了电压倍增、电压反转、负压产生...
2024-02-05 00:00:00

贴片电阻,作为电子电路中很重要的元件,其尺寸大小直接影响着电路板的设计和组装。对于一般用户来说,了解常用的贴片电阻尺寸有助于更好地理解电子产品。目前市面上最常见...
2024-11-29 10:26:38


DCDC降压恒流芯片是一种高效的电源管理芯片,能够将较高的输入电压转换成稳定的较低输出电压,并提供恒定的电流输出。这种芯片应用于LED照明、电池充电、电机驱动等...
2024-02-12 00:00:00

三角锉是常见的手工工具,应用于金属加工、木工和修整工作中。规格尺寸因用途和制造标准而异,通常分为不同的型号。三角锉的长度通常在150毫米到300毫米之间,最常见...
2021-08-01 00:00:00